JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: PULIVENDULA DEPARTMENT OF MATHEMATICS

I B.TECH – II SEMESTER (Common to all Branches of Engineering) (THEORY)

Subject Code	Title of the Subject	L	T	P	C
	Differential Equations	3	1	900	4
	and Vector Calculus				

	COURSE OBJECTIVES						
1	To enlighten the learners in the concept of differential equations and multivaria						
	calculus						
2	To furnish the learners with basic concepts and techniques at plus two level to lead						
	them into advanced level by handling various real world applications.						

	COURSE OUTCOMES						
CO1	solve the differential equations related to various engineering fields						
CO2	Identify solution methods for partial differential equations that model physical processes						
CO3	interpret the physical meaning of different operators such as gradient, curl and divergence						
CO4	estimate the work done against a field, circulation and flux using vector calculus						

Mapping between Course Outcomes and Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				1	-							
CO2										14		
CO3										-1	F1.27	2
CO4			·	1								
CO5			14									

SYLLABUS

UNIT I: Linear Differential Equations of Higher Order

Definitions, complete solution, operator D, rules for finding complimentary function, inverse operator, rules for finding particular integral, method of variation of parameters.

UNIT II: Equations Reducible to Linear Differential Equations and Applications

Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients, Applications: Mass spring system and L-C-R Circuit problems.

UNIT III: Partial Differential Equations

08 hrs

First order partial differential equations, solutions of first order linear and non-linear PDEs.

Solutions to homogenous and non-homogenous higher order linear partial differential equations.

mayor En - BS

In al

UNIT IV: Multivariable Calculus (Vector differentiation)

Scalar and vector point functions, gradient, divergent, curl and their properties (Identities and applications)

UNIT V: Multivariable Calculus (Vector integration)

Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof).

Textbooks:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017.

References:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. Dennis G. Zill and Warren S. Wright, Advanced Engineering Mathematics, Jones and Bartlett, 2011.
- 3. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018
- 4. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 5. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.

2. greenel

6.

7.

4.